Course syllabus

Matematisk modellering
Mathematical Modelling

FMAA10, 3 credits, G1 (First Cycle)

Valid for: 2017/18
Decided by: PLED F/Pi
Date of Decision: 2017-04-06

General Information

Main field: Technology.
Compulsory for: Pi1
Language of instruction: The course will be given in Swedish

Aim

The aim of the course is to give awareness of the problems of mathematical modelling, i.e., what it means to create quantitative models which can give understanding of phenomena in reality. A further aim is that the student should learn to master some general tools and structures which can be used in modelling, and learn engineering ways of thinking. The course should also provide further acquaintance with Matlab and its use for simulation and computation. Furthermore, the course should develop the student’s abilities in oral and written presentation.

Learning outcomes

Knowledge and understanding
For a passing grade the student must

- be able to clearly explain and use the basic concepts of mathematical modelling, in particular be able to explain what a mathematical model is.
- be able to describe and informally explain the process of mathematical modelling, including identification of the problem, formulation, analysis, computation, simulation and feedback.

Competences and skills
For a passing grade the student must

be able to, independently or in a group, apply the mathematical modelling process on
simple and realistic, but vaguely formulated problems, of which some are connected to environmental issues. More specifically, the student should show good ability to:

- identify and judge how different factors affect a system,
- formulate a problem in mathematical terms, equations and constraints,
- judge the validity and limitations of a model, and how it can be refined,
- analyse and carry out simple simulations on a model,
- consider and interpret the solution model in relation to the original problem, and judge the validity and limitations of the solution.

independently, using appropriate documentation, be able to write Matlab programs to solve mathematical problems within the framework of the course.

in writing as well as orally, with proper terminology, in a well-structured manner and with clear logic be able to explain the solution to a modelling problem.

Judgement and approach

For a passing grade the student must

- develop an attitude to the world around us and mathematics, where the use of mathematics in quantitative descriptions of reality seems natural and possible.
- be able to tolerate redundance in or missing data, and in such cases to have an engineering attitude in making considerations.

Contents

Modelling: The couplings between model and reality. Validation of a model. Some modelling tools. Simple simulations using Matlab.

Examination details

Grading scale: UG - (U,G) - (Fail, Pass)

Assessment: Written and oral reports of project work, carried out individually and in groups. Compulsory attendance at the project reports.

The examiner, in consultation with Disability Support Services, may deviate from the regular form of examination in order to provide a permanently disabled student with a form of examination equivalent to that of a student without a disability.

Admission

Required prior knowledge: FMAB20 Linear Algebra. The first part of the course FMAA01/FMAA05.

The number of participants is limited to: No

The course overlaps following course/s: FMA045
Reading list

Contact and other information

Course coordinator: Studierektor Anders Holst, Studierektor@math.lth.se
Course homepage: http://www.maths.lth.se/course/fmaa10/