Course syllabus

Endimensionell analys
Calculus in One Variable

FMAA05, 15 credits, G1 (First Cycle)

Valid for: 2017/18
Decided by: PLED F/Pi
Date of Decision: 2017-04-06

General Information

Main field: Technology.
Compulsory for: B1, B11, C1, D1, E1, F1, I1, K1, L1, N1, Pi1, V1, W1
Language of instruction: The course will be given in Swedish

Aim

The aim of the course is to give a basic introduction to calculus one variable. Particular emphasis is put on the role that the subject plays in applications in different areas of technology, in order to give the future engineer a good foundation for further studies in mathematics as well as in other subjects. The aim as also to develop the student’s ability to solve problems, to assimilate mathematical text and to communicate mathematics.

Learning outcomes

Knowledge and understanding
For a passing grade the student must

- within the framework of the course with confidence be able to handle elementary functions of one variable, including limits, derivatives and integrals of them .
- be able to set up and solve some types of linear and separable differential equations that are important in the applications.
- be familiar with the logical structure of mathematics, in the way it appears e.g. in plane geometry.
- be able to give a general account of and illustrate the meaning of mathematical concepts in calculus in one variable that are used to construct and study mathematical models in the applications.
- be able to account for the contents of definitions, theorems and proofs.
Competences and skills
For a passing grade the student must

- be able to demonstrate a good algebraic computational ability and without difficulties
 be able to calculate with complex numbers.
- in the context of problem solving be able to demonstrate an ability to
 independently choose and use mathematical concepts and methods in one-dimensional
 analysis, and to construct and analyse simple mathematical models.
- in the context of problem solving be able to integrate knowledge from different parts of
 the course.
- be able to show capability to explain mathematical reasoning in a structured and
 logically clear way.

Contents

Curves and equations of second degree. Plane geometry. Analytic geometry. The circle,
ellipse, hyperbola. Arithmetic and geometric sums. The binomial theorem. Modulus of a
number. Trigonometry. Powers and logarithms. The concept of a function. The
properties of the elementary functions: graphs, formulas. Sequences of numbers. Limits
with applications: asymptotes, the number e, series. Continuous functions. Derivatives:
definition and properties, applications. Derivatives of the elementary functions. Properties
of differentiable functions: the mean value theorem with applications. Curve sketching.
Local extrema. Optimization. Some simple mathematical models. Problem solving
within the above areas.

Part 2. Complex numbers and polynomials. The concept of primitive function. Simple
Definition of an integral. Riemann sums. Geometrical and other applications of integrals.
Improper integrals. Differential equations of first order: linear and with separable
variables. Linear differential equations with constant coefficients. Solving homogeneous
and certain inhomogeneous equations. Applications. The Taylor and Maclaurin formulæ.
Expansions of the elementary functions. Understanding the remainder term. Applications
of Maclaurin expansions. Problem solving within the above areas.

Examination details

Grading scale: TH - (U,3,4,5) - (Fail, Three, Four, Five)
Assessment: Written test in both subcourses, comprising theory and problem solving.
The final grade is the integer part of the mean of the two grades of
the subcourses (at most 5). Two computational ability tests (see subcourse B1 below).
Some oral and written assignments. ONLY STUDENTS WHO PASSED THE TESTS
OF COMPUTATIONAL ABILITY AND THE FIRST ORAL ASSIGNMENT MAY
PARTICIPATE IN THE FIRST WRITTEN TEST. ONLY STUDENTS WHO
PASSED THE SECOND ORAL ASSIGNMENT MAY PARTICIPATE IN THE
SECOND WRITTEN EXAM.

The examiner, in consultation with Disability Support Services, may deviate from the
regular form of examination in order to provide a permanently disabled student with a
form of examination equivalent to that of a student without a disability.
Credits: 8. Grading scale: UG. Assessment: Written test comprising theory and problem solving. Computational ability tests must be passed before the examination. One assignment (oral and in writing) must be passed before the examination. Contents: See above, part 1.

Credits: 7. Grading scale: UG. Assessment: Written test comprising theory and problem solving. One assignment (oral and in writing) must be passed before the examination. Contents: The whole course, but with emphasis on part 2 above.

Code: 0308. Name: Computational Ability Test 1.
Credits: 0. Grading scale: UG.

Credits: 0. Grading scale: UG.

Credits: 0. Grading scale: UG.

Code: 0608. Name: Computational ability test 2.
Credits: 0. Grading scale: UG.

Admission
The number of participants is limited to: No
The course overlaps following course/s: FMA410, FMA415, FMA645, FMAA01

Reading list

Contact and other information
Course coordinator: Studierektor Anders Holst, Studierektor@math.lth.se
Course administrator: Studerandeexpeditionen, expedition@math.lth.se
Course homepage: http://www.maths.lth.se/utbildning/matematiklth/
Further information: The course Calculus in one variable is taught and examined in two versions, A (=FMAA01) and B (=FMAA05) respectively, depending on the student’s program. The goals are the same. The present course description is version B. Before the written retake exams there it will be possible to retake the tests of computational ability and the oral assignments.