(Created 2010-07-25.)
 NUMERICAL ANALYSIS FMN050
Credits: 6. Grading scale: TH. Cycle: G2 (First Cycle). Main field: Technology. Language of instruction: The course will be given in English on demand. FMN050 overlaps following cours/es: FMN011, FMN041, FMN081, FMN130, FMNF01 and FMNN10. Compulsory for: E3. Alternative for: I3. Course coordinator: Director of studies Anders Holst, Anders.Holst@math.lth.se, Numerical Analysis. Recommended prerequisits: FMA420 Linear Algebra, FMAA01/05 Calculus in One Variable, FMA430 Calculus in Several Variables, experience with MATLAB. Assessment: The grade is based on homework assignments and a written exam. Home page: http://www.maths.lth.se/na/courses/FMN050.

Aim
The aim of the course is to teach basic computational methods for solving simple and common mathematical problems using computers and numerical software. This includes the construction, application and analysis of basic computational algorithms. Problemsolving by computers is a central part of the course.

Knowledge and understanding
For a passing grade the student must

be able to choose suitable computational methods to solve simple problems that occur in mathematical models in, e.g., electronics, and to be able to construct computable approximations. Moreover, students must be able to independently implement and to apply such algorithms.

Skills and abilities
For a passing grade the student must

- be able to independently select and apply computational algorithms.

- be able to evaluate both accuracy and relevance of numerical results.

- report solutions to problems and numerical results in written form.

Judgement and approach
For a passing grade the student must

- write a logically well structured report in suitable terminology on the construction of basic mathematical models and algorithms.

- write an algorithmically well structured report in suitable terminology on the numerical solution of a mathematical problem.

Contents
Software for scientific computing, error analysis, computer arithmetic, condition, systems of (non) linear equations, fixed point and Newton iteration, least squares, eigenvalues, interpolation, ordinary differential equations, FFT.

Literature
Timothy Sauer: Numerical Analysis. Pearson (2006), ISBN 0-321-26898-9