Gäller för: Läsåret 2021/22
Fakultet: Lunds tekniska högskola
Beslutad av: Programledning I
Beslutsdatum: 2021-04-21
Huvudområde: Teknik.
Obligatorisk för: D3, E3
Undervisningsspråk: Kursen ges på svenska
Kursen ska ge studenten grunderna i matematisk modellering av slumpmässig variation och förståelse för principerna bakom statistiska analyser. Den ska också ge studenterna en verktygslåda med de vanligaste modellerna och metoderna samt förmågan att använda dessa i olika praktiska situationer. Studenten ska också kunna modifiera standardmodellerna och metoderna till olika icke-standardsituationer och kunna hantera beroende mellan observationer.
Kursen fyller två syften. Dels är den en allmänbildningskurs i matematisk statistik, dels ska den ge en grund för vidare studier.
Allmänbildningen behövs för den som i sitt yrkesliv inte nödvändigtvis kommer att syssla med statistiska analyser dagligen men som kan förväntas behöva genomföra enklare statistiska tester ibland och presentera resultatet för sina kollegor. Man förväntas då också kunna läsa och värdera andras analyser.
Kursen ska, framför allt, ge en grund för vidare studier. Dels inom statistisk modellering och analys av slumpmässiga fenomen i tiden och/eller rummet, dels i tillämpningsämnena, t.ex. telekommunikation, ekonomi, signalbehandling, logistik och processtyrning. Tyngdpunkten ligger därför på sannolikhetsteori och statistisk modellering av både oberoende och beroende data.
Kunskap och förståelse
För godkänd kurs skall studenten
Färdighet och förmåga
För godkänd kurs skall studenten
Värderingsförmåga och förhållningssätt
För godkänd kurs skall studenten
Dataanalys. Beskrivande statistik. Sannolikhetsaxiomen. Betingad sannolikhet, oberoende händelser. Stokastiska variabler och funktioner av sådana. Väntevärde, varians och kovarians. Normalfördelningen, binomialfördelningen och andra viktiga fördelningar för mätningar och frekvenser. Betingade fördelningar och betingade väntevärden. Punktskattningars egenskaper. ML-metoden och MK-metoden. Principer för intervallskattning och hypotesprövning. Metoder för normalfördelade observationer. Approximativa metoder grundade på normalfördelning. Skattning av felkvot. Korrelation. Linjär univariat och multipel regression.
Betygsskala: TH - (U,3,4,5) - (Underkänd, Tre, Fyra, Fem)
Prestationsbedömning: Skriftlig tentamen, godkända laborationer och godkänt färdighetsprov
Om så krävs för att en student med varaktig funktionsnedsättning ska ges ett likvärdigt examinationsalternativ jämfört med en student utan funktionsnedsättning, så kan examinator efter samråd med universitetets avdelning för pedagogiskt stöd fatta beslut om alternativ examinationsform för berörd student.
Delmoment
Kod: 0115. Benämning: Tentamen.
Antal högskolepoäng: 6. Betygsskala: TH. Prestationsbedömning: Skriftlig tentamen.
Kod: 0215. Benämning: Laborationer.
Antal högskolepoäng: 1. Betygsskala: UG. Prestationsbedömning: Datorlaborationer.
Kod: 0315. Benämning: Färdighetsprov.
Antal högskolepoäng: 0,5. Betygsskala: UG. Prestationsbedömning: Datorbaserat test
Förutsatta förkunskaper: Endimensionell analys, Linjär algebra och Flerdimensionell analys.
Begränsat antal platser: Nej
Kursen överlappar följande kurser: FMSF30, FMSF35, FMSF40, FMSF45, MASB03, FMSF50, FMSF55, FMSF70, MASB02, FMSF75, MASA01, FMSF80, MASA02
Studierektor: Johan Lindström, studierektor@matstat.lu.se
Hemsida: http://www.ctr.maths.lu.se/course/fmsf20_DE/