Gäller för: Läsåret 2013/14
Beslutad av: Utbildningsnämnd B
Beslutsdatum: 2013-04-10
Huvudområde: Teknik.
Obligatorisk för: E2, F2, I2, Pi2
Alternativobligatorisk för: D2
Valfri för: C4, N3
Undervisningsspråk: Kursen ges på svenska
Att ge matematiska begrepp och metoder från linjär algebra och analys som är viktiga för systemteori (kontinuerlig och diskret), och för vidare studier inom till exempel matematik, ekonomi, fysik, matematisk statistik, mekanik, reglerteknik, signalteori samt för framtida yrkesverksamhet. Syftet är vidare att utveckla studenternas förmåga att lösa problem, att tillgodogöra sig matematisk text och att kommunicera matematik.
Kunskap och förståelse
För godkänd kurs skall studenten
ha kunskap om egenvärdens betydelse i stabilitets- och resonanssammanhang, för såväl tidskontinuerliga som tidsdiskreta linjära system.
kunna beskriva och använda begreppen linjaritet, tids- och rumsinvarians, stabilitet, kausalitet, impulssvar och överföringsfunktion, såväl i kontinuerlig som diskret tid.
kunna beskriva strukturen hos en exponentialmatris och kunna beräkna exponentialmatriser i enkla fall.
kunna karakterisera olika typer av kvadratiska former dels med hjälp av egenvärdesteknik, dels med hjälp av kvadratkomplettering.
kunna definiera begreppet faltning, diskret och kontinuerlig, och kunna använda det både för att beskriva linjära tidsinvarianta insignal-utsignalsystem, och för beskrivning av vissa typer av integralekvationer.
ha viss erfarenhet och förståelse av matematiska och numeriska datorprogram.
Färdighet och förmåga
För godkänd kurs skall studenten
kunna visa förmåga att självständigt välja lämpliga metoder för att lösa system av linjära differentialekvationer och system av linjära differensekvationer, och för att genomföra lösningen i huvudsak korrekt.
kunna visa förmåga att använda egenvärdesteknik, elementär distributionsteori, funktionsteori, Fourier- och Laplacetransformationer och faltningar vid problemlösning inom teorin för linjära system.
i samband med problemlösning, kunna visa förmåga att integrera kunskaper från de olika delarna i kursen.
med adekvat terminologi, väl strukturerat och logiskt sammanhängande kunna redogöra för lösningen till matematiska problem inom kursens ram.
Linjär algebra: spektralteori, kvadratiska former.
System av linjära differentialekvationer: tillståndsekvationer, lösning genom diagonalisering, stabilitet, stationära lösningar och transienter. Lösning med exponentialmatris.
In-utsignalrelationer: linjaritet, tids- och rumsinvarians, stabilitet, kausalitet. Faltningar. Elementär distributionsteori. Överförings- och frekvensfunktioner. Diskreta system.
Fourieranalys: Laplace- och Fouriertransformationerna. Inversionsformler, faltningssatsen och Parsevals formel. Transformteori och analytiska funktioner. Tillämpningar på differentialekvationer och system av sådana.
Betygsskala: TH
Prestationsbedömning: Skriftligt prov omfattande teori och problem. Datorlaborationer och obligatoriska inlämningsuppgifter som ska vara utförda FÖRE tentamen.
Delmoment
Kod: 0108. Benämning: System och transformer.
Antal högskolepoäng: 7. Betygsskala: TH.
Kod: 0208. Benämning: Datorlaborationer.
Antal högskolepoäng: 0. Betygsskala: UG.
Förutsatta förkunskaper: FMAF01 Funktionsteori.
Begränsat antal platser: Nej
Kursen överlappar följande kurser: FMA030, FMA036, FMA062, FMA450, FMAF10
Kursansvarig: Studierektor Anders Holst, Studierektor@math.lth.se
Hemsida: http://www.maths.lth.se/matematiklth/vitahyllan/vitahyllan.html
Övrig information: Tentamen på kursen räknas som tentamen på de tidigare kurserna FMA450 System och transformer och FMA036 Linjär analys.